
Overview of BC Learning Network SMS2 

Introduction 
This guide is designed to be a cumulative overview of the SMS2 web 
application. SMS2 is a student management system which integrates with 
Moodle, a learning management system (LMS) employed by many school 
districts and universities around the world. SMS2 also integrates with MyEdBC, 
British Columbia's central student data repository. 

This document will cover both business logic and programmatic logic of the 
application, and attempt to orient new developers to the project. If you have any 
questions while reading this document, feel free to contact the author 
at chris.james.foster@gmail.com. 

This document is up-to-date as of: March 3rd, 2016 

Table of Contents 
• Introduction 
• Expected Knowledge 
• Technologies in SMS 
• Github Workflow 
• Releases 
• Build Process 
• User Viewpoints 
• External Integrations 

Expected Knowledge 
This documentation is written with two key expectations: 

1. You have basic familiarity with web development. You have already used 
and have experience with technologies like Git, Javascript, CSS, HTML, and a 
server side language of some type. If you don't have basic prior experience 
with web development, you may find the following documentation difficult to 
read and may find it challenging to contribute to a project of this size. 

2. You are willing to learn the involved technologies. This documentation is 
written as an overview of the concepts and technologies used within SMS, 
and assumes that you will learn any technologies you are not already familiar 
with. Each respective technology has better tutorials on their project pages 



than we could write here, so this documentation will only describe each 
technology briefly and will primarily focus on their relevance to SMS. It will be 
very difficult to contribute to this project without understanding all of the 
technologies in this document. 

Technologies in SMS 
This section provides a brief overview of the technologies we use in SMS. If you 
are not familiar with any of these technologies, please read through their 
websites and appropriate guides or tutorials. You will need to be familiar with all 
of these technologies in order to develop any complex code in SMS. 

Angular 
AngularJS is a client side javascript framework for writing single page web 
applications (SPAs). The entire client side codebase for SMS is written in 
Angular, and you will need to know it to develop any frontend code. Angular is 
highly popular and supported by industry companies such as Google and 
Microsoft. Angular was primarily chosen over frameworks such as React or 
Ember due to the developer's prior experience with angular and the project's 
high level of maturity. 

Angular provides structure and organization to the entire client side application, 
which has allowed SMS to grow to its current size without collecting substantial 
code cruft and will allow future expansion of the codebase. It also provides two 
way data binding which enables us to achieve a highly interactive application 
with substantially less code than traditional methods. 

Gulp 
Gulp is a build tool for running any build related tasks for the application. For 
SMS, this primarily involves minifying and concatenating the dozens of client-
side javascript files into a single application file. It also manages the compilation 
of our SASS code into CSS (covered below). Lastly, it builds and generates our 
PDF templates for use at runtime. Gulp is covered more in the section titled 
"Building". 

SASS / Bootstrap 
SASS is an expansion of the traditional CSS language which provides 
substantially more power to developers. All of our CSS is a result of compiled 
SASS code. SASS adds traditional programming language constructs such as 



variables, loops, and conditionals. This allows us to integrate into SASS 
frameworks and write much more modular code. 

We use BEM syntax and aim to write modular and reusable SASS in every way 
possible. SASS provides numerous extensions over CSS that allow us to hold a 
higher standard of code quality for our stylesheets. 

Bootstrap is a highly popular CSS framework for building web applications. We 
use bootstrap as it saved us substantial time when approaching the design of 
the application, and it aids us with structuring and provides common helper 
classes. We use Bootstrap's SASS code directly and it's compiled alongside our 
own. 

Elasticsearch 
Elasticsearch is a database for advanced querying. Data is loaded from an 
authoritative data store, in our case RethinkDB, into Elasticsearch (they call this 
"indexing"). After data has been indexed, we can query Elasticsearch and it can 
return us data based on either fuzzy logic or complex queries. We primarily use 
elasticsearch to power the student search box, the course search boxes, and 
the student record search. 

It can be challenging to ensure that data in Elasticsearch is kept in sync with the 
authoritative RethinkDB tables, and they can become out of sync in error 
conditions. Additionally, we currently do not have the fuzzy search optimized to 
the level such that is performs as we'd like. However, elasticsearch remains 
heavily useful to us for complex queries and text searches. 

Node / Express 
Node is the server side environment that we use to power the application. Node 
allows us to run javascript on the server, which gives us numerous benefits. 
Firstly, it does not require developers to learn a new language. Secondly, it 
allows us to develop the back-end and front-end with the same language. And 
thirdly, javascript on the server provides a nice working environment for dealing 
with JSON. Node's event-loop based architecture makes it's performance ideal 
for an IO server environment with low processing work such as ours. 

Express is a common web framework for node. While node manages the 
execution environment for our server-side javascript, express handles things 
such as routing, middleware, parameters, request parsing, and so on. All of the 
API and request handling code is structured within express. 

RethinkDB 



RethinkDB is a NoSQL database with a powerful query language and support 
for SQL-like joins. We use RethinkDB as the main data store for all of the 
application's data and to also store cached copies of exported data from 
Moodle. RethinkDB's extremely powerful query language and join system allows 
for very flexible and advanced queries, but misuse can result in slow 
performance which is currently problematic for a few parts of the application. In 
some areas of the application, we use Thinky, which is an ORM for RethinkDB. 
Due to limitations with Thinky, we've slowly been moving code away from it and 
mostly use it to represent standard models such as the Student and Enrolment 
models. 

Redis 
Redis is a very fast key-value store. We don't interact with redis much within the 
application itself, and instead it is utilized by our session management plugin. 
Whenever someone logs into SMS, the session is stored within redis. This 
allows us to retain user logins between restarts of the application and scale the 
number of web processes to more than one (if necessary). 

Docker 
Docker is a container-management application. A 'container' is similar to a 
lightweight virtual machine. It has tools for managing sets of containers, scaling 
containers to large numbers, and storing containers on their public 
infrastructure. The docker components we expect you to be familiar with are 
the docker engine and docker-compose. 

Nginx 
SMS itself isn't directly aware of nginx, but we use nginx in our recommended 
docker-compose setup. In production, SMS should be hosted behind an SSL 
reverse proxy. SMS does not support SSL directly, so you'll have to use a 
terminating proxy such as nginx to do this. Additionally, scaling your installation 
with docker-compose becomes significantly easier if you have a tool like nginx 
to direct requests to SMS containers (although for most districts this is not a 
concern). 

Docker Structure 
Please see the installation document for an explanation of how we store the 
application and it's dependencies inside docker. 



Package Manager 
Our project is almost entirely javascript, so we use the node package 
manager (npm). Npm's configuration is primarily stored in a single 
file, package.json. This file manages all of the dependencies used within SMS 
and describes most of the application tasks it supports. For an introduction on 
getting the application running with SMS, see the project's README. 
Dependencies should never be checked into the repository. 

Application Structure 
This section will break down the organization of the project at the filesystem 
level and the layout used by SMS. 

/ (root) 
The project's root contains very high level files for SMS. The server's main entry 
point, server.jsis present here. Additionally, the package.json, gulpfile.js, 
and Dockerfile all describe the contents, dependencies, and build process of 
SMS. We also store a schools.csv file which is a hardcoded list of all schools in 
British Columbia, and a achievements.csv that we generate as part of the 
application tasks is stored here. 

/client/ 
The client directory contains all template and javascript files related to the front-
end of the application. It's broken down into a number of separate 
applications: login/, parent/,registration/, staff/, and student/. Additionally, 
a common/ directory is present for components that are shared between 
numerous applications. When a user is not logged in, the server will redirect 
them to the login application. After they've logged in, they'll be redirected to 
whichever application fits their user type. The registration application is an extra 
module that is accessed by students who want to sign up to SMS and register 
for courses. 
Note that the parent application and student application are currently empty, 
they have no content but were originally planned for development. 

/dist/ 
The /dist/ directory contains compiled files generated by the build process. The 
client will load it's source files from this directory. The PDF and email templates 



are also stored here. Until you've ran the build process, you likely won't see 
anything in this directory or it may not be present. 

/node_modules/ 
The /node_modules/ directory is where npm stores the dependencies of the 
project. While we reference this directory a few times in the source code, 
and require() calls will load files from here, you should never edit the contents 
of this directory. You won't see anything in this directory until you've run npm	
  
install. 

/server/ 
This directory contains all of the server-side code. Any templates that are 
rendered on the server and all of the route definitions and their related code are 
stored here. At the root of this directory, the app.js file defines the main route 
configuration and middleware setup. All other files in the directory represent 
more generic modules that are used by one or more routes at different points. 
The API routes themselves are stored in the applicable 
directories: login/, parent/,registration/, staff/, and student/. These routes are 
used by the client application via a REST API. We use express 3 subrouters to 
structure the API, and the subdirectories in each folder match the API route. So 
for example, the API endpoint at /api/staff/lms/teachers can be found 
at /server/staff/lms/teachers.js. 
The external/ directory also contains routes that render the HTML to start the 
client-side applications in the user's browser. The user will visit these pages, 
which starts the application that can then interact with the appropriate REST API 
endpoints. 
The models/ directory contains the database models represented in RethinkDB. 
This involves a few helper methods attached to each model as well. 
The templates/ directory contains the source for the client-side application 
launch pages rendered by the server and both the email/PDF templates which 
are compiled during the build process. 

/styles/ 
This directory contains all of the SASS code written in the application. The SASS 
code in thesass/ subdirectory will be compiled by the Gulp build process and 
stored in the compiled/subdirectory, from which it will be served to the client. All 
files that are not main.scss should start with an underscore so they are not built 
separately by the SASS compiler. 
In the sass/ subdirectory the main.scss file is the actual file that is compiled and 
served to the client. This file exclusively contains @import statements for the 
dependencies, generics, extensions, and components. We also define project-



wide configuration variables in this file. If you add a new SASS file you'll need to 
update this file to see it included in the CSS output. 
The generic/ directory is used to store SASS components that are highly flexible 
and self contained. They could potentially be used in other projects since they 
are not dependent on any design or business logic in SMS. In an ideal scenario, 
you want to write code that can be stored in generic/. 
The extensions/ directory is used to add extensions to already imported code. 
The main.scssfile includes numerous frameworks, and the most notable one is 
Bootstrap. In a few places we need to alter or extend Bootstrap related code, so 
this can be done in extensions/. 
The components/ directory is for self-contained components that are not modular 
enough to be used in another project. These are design elements and sets of 
classes specifically designed to implement a component in SMS. A good 
example of a component would be the SMS student feed (_student-­‐feed.scss), 
since it is specific to SMS and the classes are not likely to be reusable in 
another project. Something such as a class for centering elements however 
(_center.scss), would go into generic/. 

/task/ 
This directory is for storing one-time application tasks to be ran. While the 
server itself is started and continually listens, the developer tasks perform a 
single operation and then exit. The tasks are primarily used to setup a new 
installation, import data into the application, reindex the data in RethinkDB or 
Elasticsearch, or sync with Moodle or MyEdBC. 

Many of the operations triggered by developer tasks are also triggered regularly 
by the application, so the developer task simply makes a one time call to the 
worker script. 

Migration tasks are also stored in the migration/ subdirectory. Database 
migrations all mustfollow the format of UNIXTIME-­‐what-­‐it-­‐does.js. For 
example: 1448061918-­‐add-­‐course-­‐mapping.js. On startup, SMS will read this 
directory and automatically run any database migrations necessary by calling 
the exported run function on that module. The migration, if successful, only runs 
once. 
Note: All of the tasks perform a single operation, which means that some tasks 
may cause an index to become invalid or out of date. To fix this, you'll have to 
run a reindex on whatever data is out of date. For this reason, these tasks are 
for development or setup purposes only and you shouldn't run any of them in 
production. 

All of the tasks should have a comment at the top of the file describing what the 
task is for. 



/worker/ 
This directory contains operations that SMS runs regularly. At startup, each of 
these worker processes is started. They all maintain their own timers and 
perform the operation automatically on each interval. These are used for things 
such as syncing with Moodle, loading the list of schools, generating 
the achievments.csv file, and so on. 
Some scripts in the task/ directory call these worker scripts as part of a 
developer task, so many of the workers are written in ways that allows them to 
be called either once or on an interval. 
All of the workers should have a comment at the top of the file describing what 
the task is for. 

Github Workflow 

Development 
We use standard Github fork-and-branching workflow. The standard Github 
flow requires that you create a new branch for your changes, create commits on 
that branch, and use a pull requestto merge the changes in. 

In addition to Github flow, all branches should be created on forks on the SMS 
repository. You should not create branches or commits directly on the SMS 
repository. Making pull requests with forks is covered in Github's 
documentation. Forks mean that even people without write access to the main 
repository can work on SMS, and it helps to avoid making Git mistakes on the 
main repository. 

If you don't have write access and you make a pull request, someone who has 
write access to the main repository will need to review your work and accept it. 

The SMS repository has two main branches to be aware of: master and dev. 
Master represents the current stable version of the application, and dev 
represents the current development branch. Since forking is used, there 
shouldn't be any other branches on the main repository. All pull requests from 
forks are made to the dev branch. 

Releases 
For instructions on creating a release, see the releases document. 

For details on steps 5 and 6 in the release instructions, see the section on 'Build 
process' below. 



Build process 
There are two types of 'building' in SMS: 

1. Instructions for building the application are covered in the README. 
2. Building a Docker image is described in the section on Docker. Building the 

docker image will indirectly build the application itself (using the instructions 
in the Dockerfile). 

User Viewpoints 
This section describes the various users that will use SMS and the current 
features available to them. 

• Admin - An admin will have complete access to the application. They are 
redirected to the staff application upon login, and have full access to all of the 
features inside the staff application such as the admin section and course 
section. 

• Clerical - A clerical user has mid-level access to the application. They are 
redirected to the staff application upon login, but cannot perform any 
administrative activities. Clerical users will primarily be able to manage 
students in SMS, rather than any SMS-level settings. 

• Counsellor - A counsellor has low-level access to the application. They are 
redirected to the staff application upon login, but have view-only access to 
any data. They are able to leave comments on students, but cannot perform 
any other activities. They do not see any SMS-level settings, like the clerical 
users. 

• Student - A student is a student who is currently enrolled in a school that is 
managed by SMS. The student application in SMS is currently empty and 
cannot be used to do anything, and students cannot login to SMS like staff 
can. The registration application, however, is intended for students and is 
their primary interaction with SMS. They can register for an account and 
signup for courses through the registration application. 

• Parent - A parent is the guardian of a student currently enrolled in a school 
that is managed by SMS. Parents have no access to the system at this point, 
cannot login, and the parent application contains nothing at this point. 

External Integrations 
This explains the external systems that SMS integrates with. It does not include 
the components that are expected to be available within a Docker instance, 
such as RethinkDB, Redis, Elasticsearch, and Nginx. 



Moodle 
Moodle is the learning management system that SMS administrates. The setup 
for Moodle is extensive and covered in our installation document. Within the 
codebase, we often refer to Moodle internally as the 'LMS'. In user-facing text, 
we refer to it as 'Moodle'. In the future, SMS may be expanded to other learning 
management systems. The interface points between SMS and Moodle are: 

• server/lms.js - Defines numerous functions used within different API routes 
for real-time access to the LMS. 

• worker/updateCourses.js - Syncs the list of courses in Moodle with SMS's 
internal cache of courses 

• worker/updateEnrolments.js - Syncs all students' course data cache (grades, 
progress, etc..) with the current data in Moodle. 

MyEdBC 
MyEdBC is British Columbia's province-wide repository of student data. We do 
not interface with MyEdBC directly, but we instruct clerical users to perform 
actions in MyEdBC and we work with the data exported from MyEdBC. 

Districts must generate a regular export of all their data in MyEdBC and store 
the file in a directory accessible to SMS. This is detailed in the installation 
document. SMS will sync with this data file, and update any students who have 
had their information changed. Linking between SMS student and MyEdBC 
student accounts is done manually by a clerical user, with recommendations 
provided by SMS. The updateRecords worker handles the syncing with the data 
file. Once a student is linked with a MyEdBC record, we consider that the 
authoritative copy of their data and don't allow anyone to edit that students 
information within SMS anymore (it should instead be done in MyEdBC). 
Whenever a student achieves the 5% completion in a course or finishes a 
course, we ask the clerical user to update the student's status in MyEdBC. We 
currently have no way to check that this is actually done so they sign off on it 
using a checkbox interface in SMS. 

It is possible to enable or disable MyEdBC integration using an environment 
variable, since not all districts are using MyEdBC. In this case we don't show 
any MyEdBC related data and always allow manual editing of student data in 
SMS. It's important to consider if your code needs to behave differently based 
on MyEdBC status of an installation and write code to handle that. 

Email 



We integrate with an external email server to send mail. This is configured 
through an environment variable, which can be specified in the docker-compose 
setup. Our email usage is fairly standard, but we don't provide this ourselves 
and expect it to be configured to send to any domain such as outlook or gmail. 

You cannot run SMS without an email installation, as users will receive their 
passwords via email and other important information is sent that way. 

SMS2 Documentation - 2016 

	
  


